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the conformal cross-ratios.
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1. Introduction

Based on investigations of near horizon geometries and scattering from black hole met-

rics, it was conjectured [1 – 3] that the large N limit of some superconformal gauge the-

ories in d-dimensional flat space-time is governed by string (supergravity) theories on

d + 1-dimensional anti-de Sitter space (AdSd+1) times a 10 − (d + 1) compact manifold

(M10−(d+1)).1 In particular, strongly coupled N = 4 supersymmetric Yang-Mills theory in

four dimensions (SYM) is conjectured to be dual to Type IIB supergravity on an AdS5×S5

background.

The compactification of Type IIB supergravity on AdS5 × S5 gives rise to an infinite

tower of massive Kaluza-Klein (KK) modes in the resulting five-dimensional theory. The

isometry group of Type IIB supergravity is identical to the superconformal group of the

dual field theory. The kinematical relation between the two theories implies that the scalar

KK modes sk (k ≥ 2) that are mixtures of the five-form potential and the graviton on S5,

are dual to 1
2 -BPS operators of N = 4 SYM. These operators form short superconformal

1For a review of the correspondence see e.g. [4].
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multiplets and have conformal dimensions that are protected from quantum corrections.

By definition, the highest-weight operators of these multiplets are annihilated by half of

the Poincaré supercharges.

Another kinematical consequence of the identification mentioned above is that two-

and three-point functions of 1
2 -BPS operators are protected from quantum corrections.

Therefore, the calculation of the three-point supergravity-induced correlators doesn’t give

any new dynamical information and one needs to go further to test the conjectured corre-

spondence.

The four-point functions of such operators are not protected from quantum corrections

and therefore are the simplest non-trivial candidates to explore the dynamics in the strong

coupling limit. Furthermore, the quantum behavior of four-point functions is severely re-

stricted, not only kinematically due to conformal invariance, but also dynamically due

to the existence of the Lagrangian of N = 4 SYM. The latter is given by the inser-

tion procedure [5], and reduces the functional freedom predicted by conformal invariance.

This inherent dynamical feature of N = 4 SYM has no analogue in Type IIB supergrav-

ity and offers the possibility of testing the AdS/CFT correspondence by comparing the

supergravity-induced results with the structure predicted by it [6].

The five-dimensional effective action for Type IIB supergravity relevant for the calcula-

tion of supergravity-induced four-point functions of 1
2 -BPS operators has already been con-

structed [7]. The most important feature of the Lagrangian is that quartic couplings have at

most four derivatives in the fields. Due to the involved computational work and complexity

of the couplings, only specific examples of four-point functions involving four identical op-

erators have been calculated, namely, for the operators with weight k = 2, 3, 4 [8 – 10].2 It

has been found that the supergravity results indeed have the dynamical structure predicted

by N = 4 SYM.

In this paper we go beyond and explore the gauge/supergravity duality calculating

the first non-trivial four-point function of mixed 1
2 -BPS operators with lowest conformal

dimensions, i.e., the correlation function involving two k = 2 and two k = 3 operators. We

first establish the general structure predicted by conformal invariance and the insertion

procedure, and then compare it with the one calculated from supergravity.

To this end, we first extract the relevant fourth order Lagrangian from the general

one. We find that the four-derivatives quartic couplings can be reduced to two and non-

derivatives couplings. Hence, the relevant Lagrangian is of σ-model type. This characteristic

was also found for the relevant Lagrangians necessary for the computation of the four-point

functions mentioned above. The cancellation of four derivatives in the present case was

indeed expected since the relevant couplings are sub-subextremal [14].

We again find that the amplitude splits into a “free” and a “quantum” part which

exactly coincide with the result calculated from N = 4 SYM and the prediction given by

the insertion procedure. Since in the supergravity side there is not a quantity analogous

to the coupling constant gYM, the latter can be interpreted as another non-trivial check

supporting the AdS/CFT correspondence.

2For four-point correlators of non-superconformal primary operators, see [11 – 13].
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The paper is organized as follows: in section 2 the general form of the four-point

function under consideration is found from conformal, R- and crossing symmetries. Further

constraints on the coefficients are found by the insertion procedure. In section 3, we obtain

the Lagrangian that we use to compute the supergravity-induced amplitude. Finally, in

section 4 the result obtained from the supergravity analysis is compared with the conformal

field theory predictions. Technical details are gathered in the appendices, in particular,

the C-algebra (where we include the normalized projectors) and the novel computation

of vector and massive symmetric tensor exchange diagrams, where the vector and tensor

couple to currents which are not conserved on-shell.

2. Generalities

The conformal structure of SYM restricts the form of the four-point function. In this

section the general form of the four-point function of two weight-2 and two weight-3 1
2 -

BPS operators is discussed.

The 1
2 -BPS operators of conformal weight k we consider are single-trace operators in

the N = 4 SYM theory, given by3

OI
k = CI

i1···ik
tr(φi1 · · · φik). (2.1)

The fields φi, i = 1, . . . 6 areN = 4 SYM scalar fields and the CI
i1,...ik

are traceless symmetric

SO(6) tensors (see appendix A). The index I runs over the basis of the corresponding SO(6)

irrep with Dynkin labels [0, k, 0]. We want to find the general structure of the four-point

function

〈OI1
2 OI2

2 OI3
3 OI4

3 〉 ≡ 〈O1
2O2

2O3
3O4

3〉

and compare it with the result we obtain in the supergravity approximation.

We will apply the methods of sections 2 and 3 of [9] (see also references there) to our

specific case. This gives a basis in terms of the tensor structures appearing. There are six

different structures belonging to four equivalence classes, which are shown in figure 1. They

are called propagator structures, since they appear naturally by connecting propagators of

the scalar fields φi. The elements in an equivalence class are related by crossing symmetry.

To get the most general conformally invariant form of the correlator, we multiply each

structure by a function of the conformal cross-ratios

s =
x2

12x
2
34

x2
13x

2
24

, t =
x2

14x
2
23

x2
13x

2
24

, (2.2)

3For k ≥ 4 the scalar fields sk correspond to extended 1
2
-BPS operators, where these single-trace operators

receive a multi-trace correction. For regular correlators however, this operator mixing is suppressed in the

large N limit [15, 14].
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Figure 1: Propagator structures. The diagrams are divided into four equivalence classes. The

elements in an equivalence class are related by crossing symmetry.

where x2
ij = |~xi − ~xj |2. Following this procedure gives, in terms of the propagator basis

from appendix A,

〈O1
2(x1)O

2
2(x2)O

3
3(x3)O

4
3(x4)〉 = a(s, t)

δ12
2 δ34

3

x4
12x

6
34

+ b(s, t)
S1234

x2
12x

2
13x

2
14x

2
23x

2
24

+c1(s, t)
C1243

x2
12x

4
34x

2
13x

2
24

+ c2(s, t)
C1234

x2
12x

4
34x

2
14x

2
23

(2.3)

+d1(s, t)
Υ1234

x4
13x

2
34x

4
24

+ d2(s, t)
Υ1243

x2
34x

4
23x

4
14

.

Here, the Ok denote the canonically normalized versions of the operators Ok, such that

〈OI1
k (x1)O

I2
k (x2)〉 = δI1I2

x2k
12

. This is the most general form, allowed by conformal- and R-

symmetry, of the four-point function we consider. The coefficient functions in eq. (2.3)

split into a “quantum” and a “free” part. We will denote the quantum part with a hat,

e.g. a(s, t) = â(s, t) + a, where a is the free part discussed at the end of this section.

By simple symmetry considerations, relations between the coefficient functions can be

derived. Note that when permuting x1 ↔ x2, the cross-ratios transform as s → s/t, and

t → 1/t. On the other hand, in the r.h.s. of eq. (2.3), this corresponds to interchanging

the representation labels 1 and 2. Using the symmetry properties of the C-tensors, it then

immediately follows that

a(s, t) = a(s/t, 1/t), b(s, t) = b(s/t, 1/t),

c1(s/t, 1/t) = c2(s, t), d1(s/t, 1/t) = d2(s, t). (2.4)

– 4 –
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These are the crossing symmetry relations.

There is another relation between these coefficient functions. This is based on the

insertion formula [5]. This procedure gives additional constraints on the quantum part of

the correlator. From the results of section 3 of ref. [9], we find that the coefficient functions

can be expressed in terms of a single function F(s, t) by

â(s, t) = sF(s, t), d̂1(s, t) = F(s, t), d̂2(s, t) = tF(s, t), (2.5)

and

b̂(s, t) = (s− t− 1)F(s, t),

ĉ1(s, t) = (t− s− 1)F(s, t),

ĉ2(s, t) = (1− s− t)F(s, t).

(2.6)

The crossing symmetry relations (2.4) then imply that F(s/t, 1/t) = tF(s, t). Hence, all

dynamical information in the four-point function is completely determined by the single

function F(s, t) of the cross-ratios. This result is purely based on conformal field the-

ory considerations and the insertion procedure. Later we will compare the result from

supergravity calculations with this general form.

Finally, the coefficient functions in free field theory are, in the large N limit, given by

a = 1, b =
12

N2
, c1,2 =

6

N2
, d1,2 = 0. (2.7)

Note that the color structure of the diagrams implies that the free field contribution from

one-particle reducible diagrams identically vanishes. Also, the coefficient a comes from a

disconnected diagram, and hence doesn’t appear when considering the connected four-point

function.

3. Supergravity Lagrangian

The computation of four-point functions of 1
2 -BPS operators in supergravity approximation

requires the 5d effective quartic action of compactified Type IIB supergravity on an AdS5×
S5 background, and the identification of the relevant parts. The effective five-dimensional

action can be written as [7]

S =
N2

8π2

∫

d5z
√

g(L2 + L3 + L4), (3.1)

a sum of quadratic, cubic and quartic terms. In comparison with ref. [7], we will work on

the Euclidean version of AdS5, which results in an overall minus sign, and rescale the fields

to match the quadratic part presented below. In equation (3.1), g is the determinant of

the Euclidean metric on AdS5, ds2 = 1
z2
0
(dz2

0 + dxidxi), with i = 1, . . . , 4.
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The quadratic terms were found in [16]. The relevant part in this case is

L2 =
1

4

(

∇µs1
2∇µs1

2 − 4s1
2s

1
2

)

+
1

4

(

∇µs1
3∇µs1

3 − 3s1
3s

1
3

)

+
1

2
(F 1

µν,1)
2 +

1

2
(F 1

µν,2)
2 + 3(A1

µ,2)
2

+
1

4
∇ρφµν,0∇ρφµν

0 −
1

2
∇µφµρ,0∇νφνρ,0 +

1

2
∇µφρ

ρ,0∇νφ
µν
0 −

1

4
∇ρφ

µ
µ,0∇ρφν

ν,0

− 1

2
φµν,0φ

µν
0 +

1

2
(φν

ν,0)
2

+
1

4
∇ρφ

1
µν,1∇ρφµν 1

1 − 1

2
∇µφ1

µρ,1∇νφ1
νρ,1 +

1

2
∇µφρ 1

ρ,1∇νφ
µν 1
1 − 1

4
∇ρφ

µ 1
µ,1∇ρφν 1

ν,1

+
3

4
φ1

µν,1φ
µν 1
1 − 7

4
(φν 1

ν,1)
2,

(3.2)

where Fµν,k = ∂µAν,k − ∂νAµ,k, and a summation over the upper indices, which run over

the basis of the irrep corresponding to the field, is implied. A novelty in these calculations

is the appearance of the vector Aµ,1 and the tensor φµν,1. These appear coupled to one s2

and one s3 scalar field, which lead to tree diagrams where these fields are exchanged. In

previous calculations, these fields were not present because of SO(6) selection rules.

The cubic couplings needed to calculate four-point functions of arbitrary 1
2 -BPS oper-

ators were calculated in refs. [17, 15, 18]. The couplings are given in terms of C-tensors,

which are related to spherical harmonics on S5. They are the Clebsch-Gordan coefficients

for tensor products of two SO(6) irreps. For definitions and normalization, we refer to

appendix B of ref. [9]. We will employ the notation

〈C1
k1

C2
k2

C3
[a1,a2,a3]〉

where lower indices ki denote the irrep with Dynkin labels [0, ki, 0], and the upper indices

run over the basis of the corresponding irrep. With this notation the cubic couplings

become

L3 =− 1

3
〈C1

2C2
2C3

[0,2,0]〉s1
2s

2
2s

3
2 − 3〈C1

3C2
3C3

[0,2,0]〉s1
3s

2
3s

3
2

− 1

4

(

∇µs1
2∇νs1

2φµν,0 −
1

2

(

∇µs1
2∇νs

1
2 − 4s1

2s
1
2

)

φν
ν,0

)

− 1

4

(

∇µs1
3∇νs1

3φµν,0 −
1

2

(

∇µs1
3∇νs

1
3 − 3s1

3s
1
3

)

φν
ν,0

)

− 1

2
〈C1

2C2
3C3

[0,1,0]〉
(

∇µs1
2∇νs2

3φ
3
µν,1 +

1

2

(

∇µs1
2∇µs2

3 − 6s1
2s

2
3

)

φν3
ν,1

)

− 〈C1
2C2

2C[1,0,1]〉s1
2∇µs2

2A
3
µ,1 −

3

2
〈C1

3C2
3C3

[1,0,1]〉s1
3∇µs2

3A
3
µ,1

−
√

3〈C1
2C2

3C3
[1,1,1]〉s1

2∇µs2
3A

3
µ,2 −

√
3〈C1

3C2
2C3

[1,1,1]〉s1
3∇µs2

2A
3
µ,2.

(3.3)

One interesting feature one can read off from the Lagrangian is the appearance of exchange

diagrams of a vector and a symmetric tensor field which do not couple to conserved currents:

the weight of the external scalar fields are different.

– 6 –
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Figure 2: Witten diagrams contributing to the four-point function.

The quartic couplings are the hardest to compute. The result (the details are in

appendix B) is

L4 = −1

4

(

C1234 − S1234
)

s1
2∇µs2

2s
3
3∇µs4

3

+
3

8

(

9C1234 + 5S1234 − δ12
2 δ34

3 − 3Υ1234
)

s1
2s

2
2s

3
3s

4
3.

Now that the Lagrangian has been found, we can determine its on-shell value. This amounts

to calculating exchange (and contact) diagrams. Witten diagrams of all exchange integrals

contributing are shown in figure 2. In comparison with previous results, we also have to

compute the exchange of a massive vector and a massive tensor coupled to currents which

aren’t conserved on-shell. The method we use to calculate them is described in appendix D.

4. Verifying CFT predictions and conclusions

After the on-shell value of the Lagrangian is calculated, we can trivially find the four-point

function. After finding the coefficient functions in terms of D-functions, we express them

in terms of the cross-ratios s and t by means of the D-functions (see appendix C). We find

that the four-point function has indeed the structure of eq. (2.3).

There are two ways to verify the relations predicted by the insertion procedure. First

of all, one could work with the D-functions, and use the identities in appendix D.2 of [9].

Crossing symmetry and other relations between D-functions are listed there. An advantage

of this method is that it is possible to obtain a simple form of the coefficient functions.

In the present situation, however, the above method becomes rather cumbersome and

error-prone, due to the large number of different D-functions involved. A more straight-

forward method is to express D-functions in terms of differential operators D, defined in

appendix C. Using equations (C.6), it is then possible to write the coefficients completely

– 7 –
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in terms of ln s, ln t and Φ(s, t). Using that Φ(s/t, 1/t) = tΦ(s, t), one finds that the cross-

ing symmetries (2.4) are indeed satisfied. This however is a rather trivial check, as these

crossing symmetries follow automatically if one considers the correct permutations when

calculating the individual contributions to the four-point function.

To check the insertion procedure predictions, we compare the connected four-point

function obtained from the supergravity result with the connected four-point function from

the CFT. From the coefficient a(s, t), we find the single function F(s, t):

F(s, t) =
3

N2

(

−D1133(s, t) + 4sD2233(s, t) + (1− s + t)D2244(s, t)
)

,

where a(s, t) = â(s, t) = sF(s, t).

Then, by using the second method described above, we find

b(s, t)− (s − t− 1)F(s, t) =
12

N2

c1(s, t)− (t− s− 1)F(s, t) =
6

N2

d1(s, t)−F(s, t) = 0,

(4.1)

and similar for c2 and d2. But the r.h.s. of (4.1) are nothing but the free field contributions

from eq. (2.7)! Moreover, by comparing with eqs. (2.5) and (2.6), we see that the coefficients

indeed satisfy the restrictions obtained by the insertion procedure, up to those constants.

Hence, we conclude that the coefficients calculated from supergravity split into a quantum

and a free field part, where the latter is due to one-particle irreducible (1PI) diagrams.

The novelty of this result is that it is the first time four-point correlators of 1
2 -BPS

operators of different weight (apart from some trivial (extremal) cases) have been calculated

from Type IIB supergravity. However, we do find the same features as for the case where all

operators are of equal weight k = 2, 3, 4; namely, that the quantum part of the supergravity-

induced amplitude satisfies the constrains obtained from the insertion procedure in the field

theory side, reducing the functional freedom to one (or two in the case k = 4) function of

the conformal cross-ratios. This gives further support for the AdS/CFT correspondence,

since there is no obvious explanation on the supergravity side for these results.

It would be interesting to compare our findings with the ones obtained from perturba-

tive SYM, since both results correspond to a different regime. Furthermore, one can find

the OPE of operators involved in this correlator, to compute anomalous dimensions [19 –

22].

Another interesting question is to understand better the implications of the insertion

procedure in CFT on the supergravity side. These considerations could possibly lead to

a simpler description of the AdS5 supergravity. One could also include corrections to the

supergravity result, for example by considering D-instanton effects.
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A. C-algebra

The couplings of the five-dimensional action are described in terms of integrals of spherical

harmonics on S5. These spherical harmonics can be described by C-tensors CI
i1...ik

. The

C-tensor transforms in the [0, k, 0] irrep of SO(6) (see the appendices of [17, 15]). These

C-tensors are symmetrized according to the corresponding Young pattern of the irrep

they correspond to. The integrals of the spherical harmonics appearing in the couplings

are basically the Clebsch-Gordan coefficients of products of two SO(6) irreps, and can be

expressed in terms of SO(6) rank 3 tensors

〈C1
k1

C2
k2

C3
[a1,a2,a3]

〉,

where we denote the representation index I1 by 1, etc. These rank 3 tensors are constructed

by contracting particular subset of indices of the C-tensors CI1
[0,k1,0], CI2

[0,k2,0] and CI3
[a1,a2,a3].

See appendix B of ref. [9] for details.

The quartic couplings are described in terms of products of two Clebsch-Gordan coef-

ficients, that arise from overlapping intergrals of spherical harmonics

〈C1
k1

C2
k2

C5
[a1,a2,a3]〉〈C3

k3
C4

k4
C5

[a1,a2,a3]〉. (A.1)

Since there is a summation over the representation index I5, we can use a completeness

relation to express this tensor in the so-called propagator basis. In these calculations, the

expressions in the appendix of ref. [7] are helpful. One can refer to [9] for an example of

their application.

The procecudure outlined above yields four different kinds of rank 4 tensors. One

should notice that for each kind, there are two C-tensors transforming as [0, 2, 0], and

two as [0, 3, 0], involved. This should be taken into account carefully when permuting the

representation indices. The tensor structures involved are given by

δ12
2 δ34

3 = C1
ijC

2
ijC

3
klmC4

klm, (A.2)

C1234 = C1
ijC

2
jkC

3
klmC4

ilm, (A.3)

Υ1234 = C1
ijC

2
lmC3

ijkC
4
lmk, (A.4)

S1234 = C1
ikC

2
jlC

3
lkmC4

ijm. (A.5)

The tensors δ12
2 δ34

3 and S1234 are symmetric under 1↔ 2 and 3↔ 4 separately, while C1234

and Υ1234 have the following symmetry relations:

C1234 = C2143, Υ1234 = Υ2143. (A.6)

We now evaluate eq. (A.1) for the cases of interest for us. In the case of k1 = k2 =

2, k3 = k4 = 3, this gives the following results. Note that the selection rules for k5 allow

– 9 –
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only for these values of k5.

〈C1
2C2

2C5
[0,0,0]〉〈C3

3C4
3C5

[0,0,0]〉 = δ12
2 δ34

3 ,

〈C1
2C2

2C5
[0,2,0]〉〈C3

3C4
3C5

[0,2,0]〉 =
1

2
C1234 +

1

2
C1243 − 1

6
δ12
2 δ34

3 ,

〈C1
2C2

2C5
[0,4,0]〉〈C3

3C4
3C5

[0,4,0]〉 = −
2

15
C1234 − 2

15
C1243 +

2

3
S1234

+
1

6
Υ1243 +

1

6
Υ1234 +

1

60
δ12
2 δ34

3 .

(A.7)

It is interesting to see that they are of the same form as those found in the cases where

C1, C2, C3 and C4 are all in the same representation [10, 9], if one makes the proper

identifications.

For the summation over the vector representation we get

〈C1
2C2

2C5
[1,0,1]〉〈C3

3C4
3C5

[1,0,1]〉 = 2(C1243 − C1234),

〈C1
2C2

2C5
[1,2,1]〉〈C3

3C4
3C5

[1,2,1]〉 =
1

3
(C1234 − C1243) +

2

3
(Υ1234 −Υ1243).

(A.8)

And the tensor representation

〈C1
2C2

2C5
[2,0,2]〉〈C3

3C4
3C5

[2,0,2]〉 = −
2

3

(

C1234 + C1243
)

+
4

3

(

Υ1234 + Υ1243
)

− 8

3
S1234 +

2

15
δ12
2 δ34

3 .

(A.9)

Next we consider the case where k1 = k3 = 2 and k2 = k4 = 3. These are distinctively

different from the cases encountered in previous work, since the selection rules now give

other values for the representation that is summed over. For summation over the scalar

representation the results are

〈C1
2C2

3C5
[0,1,0]〉〈C3

2C4
3C5

[0,1,0]〉 = Υ1324,

〈C1
2C2

3C5
[0,3,0]〉〈C3

2C4
3C5

[0,3,0]〉 =
1

3
C1342 +

2

3
S1324 − 1

6
Υ1324,

〈C1
2C2

3C5
[0,5,0]〉〈C3

2C4
3C5

[0,5,0]〉 =
3

5
C1324 − 1

10
C1342 − 1

5
S1324

+
1

10
δ13
2 δ24

3 +
3

10
Υ1342 +

1

50
Υ1324,

(A.10)

and for the vector cases

〈C1
2C2

3C5
[1,1,1]〉〈C3

2C4
3C5

[1,1,1]〉 =
3

2
C1342 − 3

2
S1324 − 3

10
Υ1324,

〈C1
2C2

3C5
[1,3,1]〉〈C3

2C4
3C5

[1,3,1]〉 =
5

12
C1324 − 25

84
C1324 +

5

21
S1324

+
5

12
δ13
2 δ24

3 +
1

42
Υ1324 − 5

6
Υ1342.

(A.11)

Finally, the tensor case gives

〈C1
2C2

3C5
[2,1,2]〉〈C3

2C4
3C5

[2,1,2]〉 = −
16

9
C1324 − 40

63
C1342 − 16

63
S1324

+
8

9
δ13
2 δ24

3 +
8

63
Υ1324 +

8

9
Υ1342.

(A.12)
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Tensor δ12
2 δ34

3 C1234 C1243 Υ1234 Υ1243 S1234

δ12
2 δ34

3 1000 500
3

500
3 50 50 50

3

C1234 500
3

725
3

25
3

25
3 125 25

2

Υ1234 50 25
3 125 1250

3
25
3

125
3

S1234 50
3

25
2

25
2

125
3

125
3

425
4

Table 1: Pairings between independent tensors.

The results of the remaining cases are the same, if one changes the representation labels

accordingly, except for equation (A.11), which acquires an additional minus sign in the

cases k1 = k4 = 3, k2 = k3 = 2 and k1 = k4 = 2, k2 = k3 = 3.

Finally, for completeness and in order to facilitate a future analysis of the OPE of the

four-point function, we include a table of pairings between the elements of the propagator

basis. These can be found using the completeness relation. Our results are summarized in

table 1.

With these pairings we can fix the normalization for the projectors P 1234
[k1,k2,k3]

to be

P 1234
[k1,k2,k3]

P 1234
[k1,k2,k3]

= dim[k1, k2, k3], and check that they are orthogonal. These projectors

can be used to project the four-point correlator onto the irreps appearing in the tensor

decompositions of [0, 2, 0] × [0, 3, 0] and [0, 2, 0] × [0, 2, 0]. The projectors itself we have

already found: they are proportional to the summations of C-tensors we found above. For

example, P 1234
[0,1,0] ∝ 〈C1

2C3
3C5

[0,1,0]〉〈C2
2C4

3C5
[0,1,0]〉. With table 1 it is trivial to normalize them

properly and check orthogonality.

B. Reduction of quartic couplings

In this section we describe how we can rewrite the four-derivative terms in the Lagrangian,

and end up with a remarkably simple expression for the quartic contribution to the La-

grangian. We show that the Lagrangian is of σ-model type, a feature that was also found

for the effective Lagrangian in calculations of equal-weight k = 2, 3 and 4 four-point func-

tions [8 – 10]. The fact that the Lagrangian reduces to a simple expression in each case,

suggests that there may be a simpler description.

The quartic couplings of the scalar fields are given in [7]. They can be written as

L4 = L(4)I1I2I3I4
k1k2k3k4

sI1
k1
∇µsI2

k2
∇ν∇ν(s

I3
k3
∇µsI4

k4
)

+L(2)I1I2I3I4
k1k2k3k4

sI1
k1
∇µsI2

k2
sI3
k3
∇µsI4

k4
+ L(0)I1I2I3I4

k1k2k3k4
sI1
k1

sI2
k2

sI3
k3

sI4
k4

,
(B.1)

where in the case we are interested in, two of the ki’s are equal to 2, and the other two

are equal to 3. Hence, this allows for 6 possible permutations. The indices Ii run over the

basis of the representation [0, ki, 0], and should be summed over. From now on, we will

denote this indices simply as superscript 1,2,3 and 4.

We now proceed as in refs. [9, 10]. We re-expand the products Clebsch-Gordan coeffi-

cients in the couplings, which form the so-called “OPE basis”, given by

〈C1
k1

C2
k2

C5
[a1,a2,a3]〉〈C3

k3
C4

k4
C5

[a1,a2,a3]〉,
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over the propagator basis. This is done in appendix A. The subscripts ki denote that the

C-tensor transforms according to the [0, ki, 0] irrep.

B.1 Four-derivative couplings

In the four-derivative couplings we encounter two basic tensor structures. We will denote

them as

A1234 =
3

5 · 216

(

41(C1234 − C1243) + 31(Υ1234 −Υ1243)
)

Σ1234 =
9

5 · 218

(

6(C1234 + C1243) + 12S1234 + δ12
2 δ34

3 + 3(Υ1234 + Υ1243)
)

.

(B.2)

Note that A1234 is anti-symmetric under 3 ↔ 4, while Σ1234 is symmetric. With this

notation, the four-derivative couplings become

L(4)
4 =−

[

A1234 + Σ1234
]

s1
2∇µs2

2∇ · ∇(s3
3∇µs4

3)

−
[

A3412 + Σ3412
]

s1
3∇µs2

3∇ · ∇(s3
2∇µs4

2)

+
[

A1324 + Σ1324
]

s1
2∇µs2

3∇ · ∇(s3
2∇µs4

3)

+
[

A2413 + Σ2413
]

s1
3∇µs2

2∇ · ∇(s3
3∇µs4

2)

+ A4123s1
2∇µs2

3∇ · ∇(s3
3∇µs4

2)

+ A3214s1
3∇µs2

2∇ · ∇(s3
2∇µs4

3)

(B.3)

To rewrite these terms, we first note that on an AdS5 background, we have the following

important formula, obtained by explicitly writing out the ∇ · ∇ derivative in the four-

derivative terms, and use that

[∇µ,∇ν ]V ρ = Rρ
σµνV σ,

where Rρ
σµν is the Riemann tensor associated with the Euclidean metric on AdS5. Applying

this formula leads to ∇2∇µsIk

k = ∇µ(∇2 − 4)sIk

k . Using this result we find

s1
k1
∇µs2

k2
∇ · ∇(s3

k3
∇µs3

k4
) =

(m2
k3

+ m2
k4
− 4)s1

k1
∇µs2

k2
s3
k3
∇µs4

k4
+ 2s1

k1
∇µs2

k2
∇νs

3
k3
∇ν∇µs4

k4
,

(B.4)

where the equations of motion for the s-fields on an AdS-background are used.4

If we now use formula (B.4) on each line in eq. (B.3), it is easy to see, after relabeling the

summation indices, that the four-derivative terms in the first four lines cancel each other.

For the last two lines, recall that A1234 is anti-symmetric under the interchange of 3 and 4.

But s1
2∇µs2

3∇νs
3
3∇µ∇νs4

3 is symmetric under 2↔ 3, hence A4123s1
2∇µs2

3∇νs
3
3∇µ∇νs4

3 must

vanish. A similar argument holds for the last line, hence we conclude that all four-derivative

terms vanish.

4The equation of motion we use is (∇2−m
2
k)sk = 0, that is, we do not include the correction terms, since

they do not give contributions to the four-point function. This is because these correction terms include

the fields on AdS5, hence this would lead to terms with five fields or more.
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If we sum and relabel the remaining terms after applying equation (B.4), we see that

the four-derivative couplings give a contribution to the two-derivative couplings, given by

L(4)
4 = Σ1234(m2

2 + m2
3 − 4)(−2s1

2∇µs2
2s

3
3∇µs4

3

+ s1
2∇µs3

3s
2
2∇µs4

3 + s3
3∇µs1

2s
4
3∇µs2

2),
(B.5)

since the terms A1234 times an expression symmetric in 3↔ 4 vanish.

We can simplify this even further. Notice that by a partial integration5 we have for a

general tensor χ1234

χ1234s1
2∇µs3

3s
2
2∇µs4

3 = −(χ2134 + χ1234)s1
2∇µs2

2s
3
3∇µs4

3 −m2
3s

1
2s

2
2s

3
3s

4
3, (B.6)

where the linearized equation of motion is used again. If we use this in eq. (B.5) and the

symmetry properties of the tensor Σ1234, it reduces to

L(4)
4 = Σ1234(m2

2 + m2
3 − 4)(−6s1

2∇µs2
2s

3
3∇µs4

3 − (m2
2 + m2

3)s
1
2s

2
2s

3
3s

4
3). (B.7)

This completes the calculation of the four-derivative couplings.

B.2 Two-derivative couplings

Proceeding in the same manner as before, we find for the two-derivative couplings

L(2)
4 = − 1

165150720
[337869022C1234 + 296581342C1243 − 24924719δ12δ34

+ 861160876S1234 + 62232811(Υ1234 + Υ1243)]s1
2∇µs2

2s
3
3∇µs4

3

− 1

660602880
[62281822C1234 + 529982734C1243 − 24999563δ12δ34

+ 901550428S1234 − 56591825Υ1234

+ 180608383Υ1243 ](s3
3∇µs1

2s
4
3∇µs2

3 + s1
2∇µs3

3s
2
2∇µs4

3)

If we now use eq. (B.6) again, we can rewrite this as

L(2)
4 =− 1

655360
[165622C1234 + 1782C1243 + 297δ12δ34

− 160276S1234 + 891(Υ1234 + Υ1243)]s1
2∇µs2

2s
3
3∇µs4

3

+
(m2

3 + m2
2)

660602880
[62281822C1234 + 529982734C1243 − 24999563δ12δ34

+ 901550428S1234 − 56591825Υ1234 + 180608383Υ1243 ]s1
2s

2
2s

3
3s

4
3.

(B.8)

B.3 Non-derivative couplings

The non-derivative terms contribute, after using the symmetry under 1↔ 2 and 3↔ 4, by

L(0)
4 =

1

94371840

[

911368268C1234 + 1079096380S1234 − 60339107δ12
2 δ34

3

+ 18147614Υ1234
]

s1
2s

2
2s

3
3s

4
3.

5The boundary terms do not contribute to the four-point function, see [14].
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A remarkable thing happens when we now add all quartic terms: all the “ugly” coefficients

add up to a very simple result

L4 = −1

4

(

C1234 − S1234
)

s1
2∇µs2

2s
3
3∇µs4

3

+
3

8

(

9C1234 + 5S1234 − δ12
2 δ34

3 − 3Υ1234
)

s1
2s

2
2s

3
3s

4
3.

(B.9)

This also happened in all other cases treated so far, where four operators of equal weight

(k = 2, 3, 4) were considered [8 – 10].6

C. D-functions

In the evaluation of the graphs contributing to the four-point functions, an important rôle is

played by the so-called D-functions. These D-functions correspond to a quartic interaction

of scalar fields [12]. The D-functions related to AdS5 are defined by

D∆1∆2∆3∆4(x1, x2, x3, x4) =

∫

d5z

z5
0

K∆1(z, x1)K∆2(z, x2)K∆3(z, x3)K∆4(z, x4), (C.1)

where K∆ is the bulk-to-boundary propagator for scalar fields, defined by

K∆(z, ~x) =

(

z0

z2
0 + (~z − ~x)2)

)∆

.

It is possible to express the D-functions in terms of the conformal cross-ratios s and

t. Introducing the notation D, we have based on the conformal symmetries

∏4
i=1 Γ(∆i)

Γ(Σ− 2)

2

π2
D∆1∆2∆3∆4 =

(x2
14)

Σ−∆1−∆4(x2
34)

Σ−∆3−∆4

(x2
13)

Σ−∆4(x2
24)

∆2
D∆1∆2∆3∆4(s, t), (C.2)

where Σ = 1
2

∑4
i=1 ∆i. For ∆i = 1, this expression becomes

D1111(s, t) = Φ(s, t), (C.3)

where Φ(s, t) is the one-loop (box) integral as a function of the conformal cross-ratios [23].

There are a number of relations for these D-functions, which can be used to simplify

expressions and check crossing symmetry. We do not need them here, but see ref. [9] for a

list.

6After the completion of this calculation, we learned from [14], that the same result was proved that

these four-derivative couplings have to vanish for the AdS/CFT correspondence to be consistent. This is a

so-called sub-subextremal case, where k1 = k2 + k3 + k4 − 4. If this coupling were non-zero, the associated

contact diagram would lead to divergences. The calculation done there is in the same spirit as this one.
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By considering relations for derivatives of the originial D-functions, it is possible to

derive the following relations for the D-functions [9]

D∆1+1∆2+1∆3∆4 = −∂sD∆1∆2∆3∆4

D∆1∆2∆3+1∆4+1 = (∆3 + ∆4 − Σ− s∂s)D∆1∆2∆3∆4

D∆1∆2+1∆3+1∆4 = −∂tD∆1∆2∆3∆4

D∆1+1∆2∆3∆4+1 = (∆1 + ∆4 − Σ− t∂t)D∆1∆2∆3∆4

D∆1∆2+1∆3∆4+1 = (∆2 + s∂s + t∂t)D∆1∆2∆3∆4

D∆1+1∆2∆3+1∆4 = (Σ−∆4 + s∂s + t∂t)D∆1∆2∆3∆4 .

(C.4)

Starting with (C.3) and subsequently applying these relations, it is possible to assign to

each D-function a differential operator D, such that

D∆1∆2∆3∆4(s, t) = D∆1∆2∆3∆4Φ(s, t), (C.5)

as long as each ∆1 is an integer, and their sum is even. Note that there is some arbitrariness

in defining D, because there are different combinations of the relations in eqs. (C.4) that

one can use to find a particular differential operator.

The action of the partial derivatives on Φ(s, t) is known [6], they are given by

∂sΦ(s, t) =
1

λ2

(

Φ(s, t)(1− s + t) + 2 ln s− s + t− 1

s
ln t

)

∂tΦ(s, t) =
1

λ2

(

Φ(s, t)(1− t + s) + 2 ln t− s + t− 1

t
ln s

)

,

(C.6)

where λ =
√

(1− s− t)2 − 4st. Using this together with eq. (C.5), it is possible to express

each combination of D-functions into an expression involving only Φ(s, t). This is the

method we will use to check the partial non-renormalization of the four-point function.

D. Exchange graphs

In this section we generalize the method of [24] and appendix E of [9] to calculate the

z-integrals in exchange diagrams. Our results include couplings to scalar fields of different

mass. Together with the previous results cited above, all exchange diagrams contributing

to arbitrary four-point functions of 1
2 -BPS operators can be calculated.

We briefly review the method used: First, conformal symmetry is used to bring the

z-integral into a simpler form. The basic idea is then to use the wave equation for the

propagator in the z-integral. Based on conformal invariance an ansatz for the z-integral is

proposed. Then, the wave equation is applied to the integrand of the z-integral and on the

ansatz. This leads to a system of differential equations, from which we can solve for the

z-integral.
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D.1 Vector exchange

Here we generalize the calculation of the vector z-integral done in [24] to include the case

when the vector field couples to scalar fields of different mass. The z-integral is given by

Aµ(ω, ~x1, ~x3) =

∫

dd+1z

zd+1
0

Gµν′(ω, z)gν′ρ′(z)K∆1(z, ~x1)

←→
∂

∂zρ′
K∆3(z, ~x3),

where K∆(z, ~x) is the canonically normalized bulk-to-boundary propagator for a scalar

field s∆.

The gauge boson propagator Gµν′(ω, z) with mass M in AdS5 satisfies the defining

wave equation:

−∇µ∇[µGρ]ν′ + M2Gρν′ = gρν′δ(ω, z) + ∂ρ∂ν′Λ(u), (D.1)

where [..] denotes anti-symmetrization. We can drop the gauge term Λ(u), since this is only

necessary for couplings to the massless gauge boson. However, the gauge boson couples

only to conserved currents and we refer to [24] for this case.

Using Aµν(ω, ~x1, ~x3) = Aµν(ω − ~x1, 0, ~x13), where ~x13 ≡ ~x3 − ~x1, and performing the

conformal inversion ω′

µ = ωµ/ω2, x′

µ = xµ/x2 the vector z integral takes the following form

Aµ(ω, ~x1, ~x3) = |~x13|−2∆3
1

ω2
Jµν(ω)Iµ(ω′ − ~x′

13), (D.2)

where Jµν(ω) = δµν − 2
ω2 ωµων , and

Iµ(ω) =

∫

dd+1z

zd+1
0

Gµ
ν′

(ω, z)z∆1
0

←→
∂

∂zν′

(z0

z2

)∆3

. (D.3)

We write the following ansatz, with ∆13 = ∆1 −∆3,

Iµ(ω) = ω∆13
0

ωµ

ω2
f(t) + ω∆13

0

δµ0

ω0
h(t), (D.4)

where t = ω2
0/ω

2.

To find the unknown scalar functions f(t) and h(t) we equate eqs. (D.3) and (D.4) and

apply the differential operator in eq. (D.1) to both sides. For eq. (D.3) we obtain

−∇µ∇[µIρ] + M2Iρ = −ω∆13
0

ωρ

ω2
2∆3t

∆3 − ω∆13
0

δρ0

ω0
∆13t

∆3. (D.5)

For eq. (D.4) the Maxwell term becomes

−∇µ∇[µIρ] = ω2δµλ∂λTρµ + ω2δµλΓκ
ρλTκµ + ω2δµλΓκ

λµTρκ, (D.6)

where we defined

Tρµ := ∂[µIρ] =

(

ωρ
δµ0

ω0
− ωµ

δρ0

ω0

)

(

2ω∆13+2
0

(ω2)2
(

f ′ + h′
)

+ ∆13
ω∆13

0

ω2
f(t)

)

. (D.7)

We omit the tedious but straightforward calculation of these terms.
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Now, substituting the result in the l.h.s. of equation (D.5), we find the equation in

terms of f and h. To solve it, we equate the corresponding contributions of the tensor

structures
δρ0

ω0
and

ωρ

ω2 to the l.h.s. and r.h.s. , and obtain the following coupled system of

inhomogeneous differential equations:

2∆13t
2(f ′ + h′) + ∆2

13tf + M2h = −∆13t
∆3, (D.8)

4t2(t− 1)
(

f ′′ + h′′
)

+ 2t[t(4 + ∆13) + (d− 4− 2∆13)]f
′

+2t[4t + d− 4−∆13]h
′ + [∆13(2t + d− 2−∆13) + M2]f = −2∆3t

∆3.
(D.9)

To solve the differential equations we assume power series expansions

f(t) =
∑

k

akt
k, h(t) =

∑

k

bkt
k, (D.10)

with kmin ≤ k ≤ kmax.

Substituting eq. (D.10) in eqs. (D.8) and (D.9); and intersecting the equations we find

bk and bk+1 in terms of ak and ak+1:

bk =− 2k + ∆13

2k
ak +

M2[2(−2k − 4 + d)(k + 1) + ∆13(4k − 6 + d−∆13) + M2]

4(k + 1)k[∆13(−2k − 4 + d−∆13)−M2]
ak+1

+
∆13(2∆3 + 2− d + ∆13)−M2

2(∆13 − 1)[(−2∆3 − 2 + d−∆13)−M2]
δk,∆3−1,

bk+1 =− ∆13[2(k + 1)(−2k − 4 + d) + ∆13(−4k − 6 + d−∆13) + M2]

2(k + 1)[∆13(−2k − 4 + d−∆13)−M2]
ak+1.

(D.11)

The solution is found if we substitute the second equation in the first one:

ak = 0 for k ≥ ∆3

a∆3−1 =
∆13(d− 2∆3)−∆2

13 −M2

2M2(∆3 − 1 + ∆13)
,

ak =
[∆2

13 + ∆13(2k + 2− d)][2(k + 1)(2k+4−d)+∆13(4k+6−d)+∆2
13−M2]

4(k + 1)(k + ∆13)[∆13(2k + 4− d) + ∆2 + M2]
ak+1

(D.12)

From this we see that the series terminates at

0 ≤ kmin =
d− 2− 2∆13

4
+

1

4

√

(d− 2)2 + 4M2 ≤ kmax = ∆3 − 1,

provided that kmax − kmin is an integer and ≥ 0.

One can show using table III in [25], where M2 = l2 − 1 with l ∈ Z
+, that the

terminating condition is always satisfied by Type IIB supergravity compactified in AdS5×
S5 due to the SO(6) selection rules [26].7

7It is worth to recall that the marginal case, when the equality holds and the series doesn’t terminate,

is also allowed by the SO(6) selection rules. We consider here only the terminating case. Note also that the

case M
2 = 0 requires ∆1 + ∆3 − d ∈ N for terminating of the series.

– 17 –



J
H
E
P
0
1
(
2
0
0
8
)
0
7
1

Finally, to recover the vector z-integral in terms of the original coordinates, we must

transform the coordinates back. This amounts to

ω′

0 →
ω0

ω2
0 + (~ω − ~x1)2

,

t =
ω′

0
2

(ω′ − ~x′

31)
2
→ q = ~x2

31

ω0

ω2
0 + (~ω − ~x1)2

ω0

ω2
0 + (~ω − ~x3)2

,

1

ω2
Jµλ(ω)

(ω′ − ~x′

31)λ
(ω′ − ~x′

31)
2
→ Qµ :=

(ω − ~x3)µ
(ω − ~x3)2

− (ω − ~x1)µ
(ω − ~x1)2

1

ω2
Jµλ(ω)

δλ0

ω′

0

→ Rµ :=
δµ0

ω0
− 2

(ω − ~x1)µ
(ω − ~x1)2

.

(D.13)

In the case we need in this paper, ∆1 = 3, ∆3 = 2 and M2 = 3, we find

Aµ(ω, ~x1, ~x3) =
1

~x2
31

[

− 1

12
K1(ω, ~x3)∇µK2(ω, ~x1) +

1

6
K2(ω, ~x1)∇µK1(ω, ~x3)

]

. (D.14)

The ω-integral can then be calculated straightforwardly.

D.2 Symmetric tensor exchange

Here we extend the computation in [9] using the method of [24] for the massive symmetric

tensor z-integral when the tensor field is coupled to scalar fields of different mass. In this

case the stress energy tensor Tµν is not covariantly conserved and has the form

Tµν =
1

2
∇(µs∆1∇ν)s∆3 −

1

2
gµν

(

∇ρs∆1∇ρs∆3 +
1

2
(m2

∆1
+ m2

∆3
− f)s∆1s∆3

)

, (D.15)

where s∆ denotes a scalar field of mass squared m2
∆ = ∆(∆−4), and f is the mass squared

of the tensor.

The z-integral describing the exchange of a massive symmetric tensor is given by

Aµν(ω, ~x1, ~x3) :=

∫

dd+1z

zd+1
0

Gµνµ′ν′(ω, z)T µ′ν′

(z, ~x1, ~x3). (D.16)

The tensor T µν(z, ~x1, ~x3) has the form

T µν(z, ~x1, ~x3) =
1

2
∇(µK∆1(z, ~x1)∇ν)K∆3(z, ~x3)−

1

2
gµν [∇ρK∆1(z, ~x1)∇ρK∆3(z, ~x3)

+
1

2

(

m2
∆1

+ m2
∆3
− f

)

K∆1(z, ~x1)K∆3(z, ~x3)

]

, (D.17)

where (..) denotes symmetrization.

The Ricci form of the wave equation for the bulk-to-bulk propagator Gµνµ′ν′(ω, z) for

the massive symmetric tensor field is

Wµν
λρ[Gλρµ′ν′ ] =

(

gµµ′gνν′ + gµν′gνµ′ − 2

d− 1
gµνgµ′ν′

)

δ(ω, z). (D.18)
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Pure gauge terms are omitted, because they are not needed in the case of massive tensors.

The graviton only couples to conserved currents, and we refer to appendix E of [9] for this

case.

To solve the tensor z-integral we use again Aµν(ω, ~x1, ~x3) = Aµν(ω − ~x1, 0, ~x13) and

perform the conformal inversion ω′

µ = ωµ/ω2, ~x′

µ = ~xµ/x2 on eq. (D.16) to obtain

Aµν(ω, ~x1, ~x3) = |~x13|−2∆3
1

(ω2)2
Jµλ(ω)Jνρ(ω)Iλρ(ω

′ − ~x′

13), (D.19)

where

Iµν(ω) =

∫

dd+1z

zd+1
0

Gµν
µ′ν′

(ω, z)

{

∇(µ′z∆1
0 ∇ν′)

(z0

z2

)∆3

−gµ′ν′

[

∇ρ′z
∆1
0 ∇ρ′

(z0

z2

)∆3

+
1

2
(m2

1 + m2
2 − f)z∆1

0

(z0

z2

)∆3
]}

.

(D.20)

We write the following ansatz

Iµν(ω) = ω∆13
0 gµνh(t) + ω∆13

0 PµPνφ(t) + ω∆13
0 ∇µ∇νX(t) + ω∆13

0 ∇(µ

(

Pν)Y (t)
)

= ω∆13
0 Ĩµν(ω),

(D.21)

where Pµ := δµ0/ω0; h(t), φ(t), X(t), Y (t) are four unknown scalar functions, and Ĩµν(ω)

is the ansatz used in [9] for the case ∆1 = ∆3. To find the functions we first have to equate

eqs. (D.20) and (D.21) and apply the modified Ricci operator on both sides. For eq. (D.21)

we first note that

∇ρ∇σIµν = ∇ρ∇σ

(

ω∆13
0 Ĩµν

)

= ω∆13
0

(

∇ρ∇σ Ĩµν

)

+
(

∇(ρω
∆13
0

)(

∇σ)Ĩµν

)

+
(

∇ρ∇σω∆13
0

)

Ĩµν .

This identity allows us to write

Wµν
λρ[Iλρ] = ω∆13

0

(

Wµν
λρ[Ĩρσ]

)

+ Hµν + Nµν , (D.22)

where

Hµν =
[

−
(

∇2ω∆13
0

)

Ĩρσ −
(

∇µ∇νω
∆13
0

)

Iσ
σ +

(

∇µ∇σω∆13
0

)

Iσν +
(

∇ν∇σω∆13
0

)

Iµσ

]

,

Nµν =
[

−2
(

∇σω∆13
0

)(

∇σ Ĩρσ

)

−
(

∇(µω∆13
0

)

(

∇ν)I
σ

σ

)

+gσκ
(

∇(µω∆13
0

)

(

∇κ)Iσν

)

+ gσκ
(

∇(νω
∆13
0

)

(

∇κ)Iµσ

)

]

.
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The first term in eq. (D.22) was calculated in appendix E of [9]. For the Hµν and Nµν we

obtain the following formulae

Hµν = ω0
∆13∆13

{

gµν

[

(2d− 1−∆13)h + φ + 4t2(1− t)X ′′ + 2t(2− 2t− d)X ′

+4t(1− t)Y ′ + [4(−d + 1) + 2∆13]Y
]

+ PµPν

[

(∆13 + 1)(−d + 1)h + (d− 1)φ + (∆13 + 1)4t2(1 − t)X ′′

+(∆13 + 1)2t(2 − 4t + d)X ′ + 4t(d − 1)Y ′ + (4 + 2∆13)(d − 1)Y
]

+ (d− 2−∆13)∇µ∇νX

+P(µ

ων)

ω2

[

(∆13 + 1)4t2(1− t)X ′′ + (∆13 + 1)2t(4t − 3)X ′ + 2t(−d + 1)Y ′
]

}

,

Nµν = ω0
∆13∆13

{

gµν

[

4t(t− 1)h′ − 2φ + 4t(t− 1)X ′ + 4t(1− t)Y ′ − 4Y
]

+ PµPν

[

4t(−d + 1)h′ + 2(−d + 1)φ + 4t(−d + 1)X ′

+8t2(t− 1)Y ′′ + 4t(4t− 3)Y ′ + 4(−d + 1)Y
]

+ 2∇µ∇νY

+P(µ

ων)

ω2

[

2t(d − 1)h′ + 2t(d− 1)X ′ + 8t2(1− t)Y ′′ + 2t(−d + 8− 8t)Y ′
]

}

.

(D.23)

For eq. (D.20), due to the defining wave equation for the propagator of the symmetric

tensor field eq. (D.18), we obtain

Wµν
λρ[Iλρ] =ω∆13

0 gµν
2

d− 1
(m2

1 + m2
2 − f)t∆3 + ω∆13

0 PµPν4∆1∆3t
∆3

− ω∆13
0 P(µ

ων)

ω2
4∆1∆3t

∆3.
(D.24)

From eqs. (D.22) and (D.23) the basic eq. (D.24) can be written in terms of the four

unknown functions in eq. (D.21). To determine them we first equate the terms involving

∇µ∇ν in both sides:

∇µ∇ν [−3h− φ + (d∆13 − 2∆13 −∆2
13 + f)X + 2∆13Y ] = 0. (D.25)

Now we equate the coefficients of the tensor P(µ
ων)

ω2 to get

2∆13(d− 1)h′ + 4t(t− 1)φ′′ + 8tφ′

+(∆2
13 + ∆13)4t(t− 1)X ′′ + [∆2

132(4t− 3) + ∆132(4t − 4 + d)]X ′

+∆138t(1− t)Y ′′ + 2[−f + ∆13(8− 8t− 2d)]Y ′ = −4∆1∆3t
∆3−1.

(D.26)

This equation can be integrated to give

4t(t− 1)φ′ + 4φ + (∆2
13 + ∆13)4t(t− 1)X ′ + 2(∆13d− 2∆13 −∆2

13)X

+∆138t(1 − t)Y ′ + 2(−f + 4∆13 − 2d∆13)Y + 2∆13(d− 1)h = −4∆1t
∆3 + c1,

(D.27)
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where c1 is an integration constant. Equating the coefficients of PµPν , we get

4t∆13(−d+1)h′+(∆2
13+∆13)(−d+1)h+4t2(1−t)φ′′−8t2φ′+[∆13(−d+1)+f ]φ

+(∆2
13 + ∆13)4t

2(1− t)X ′′ + [∆2
132t(2− 4t + d) + ∆132t(4− 4t− d)]X ′

+∆138t
2(t− 1)Y ′′ + 4t[f + ∆13(4t− 4 + d)]Y ′ + 2[f + ∆2

13(d− 1)]Y = 4∆1∆3t
∆3.

Substituting here eq. (D.26) we find

2t∆13(−d + 1)h′ + (∆2
13 + ∆13)(−d + 1)h + [f + ∆13(−d + 1)]φ

+ ∆2
132t(d− 1)X ′ + 2tfY ′ + 2[f + ∆2

13(d− 1)]Y = 0.
(D.28)

Finally, we equate the coefficients of gµν

4t2(t− 1)h′′ + [4t(t + 1) + ∆134t(t− 1)]h′ +

[

8

3
(f + 3) + 2d∆13 −∆13 −∆2

13

]

h

+ 4t(t− 1)φ′ +

[

−∆13 +
1

3
(f + 24)

]

φ

+

[

f

3
+ ∆13

]

4t2(1− t)X ′′ +

[

−4f

3
t(t + 1)− 2td∆13

]

X ′

+

[

f

3
+ 2∆13

]

4t(1− t)Y ′ +

[

−14f

3
+ 2∆2

13 − 4∆13d

]

Y =
2

d− 1
(m2

1 + m2
2 − f)t∆3.

(D.29)

Eqs. (D.25), (D.27), (D.28) and (D.29) form a system of four differential equations

whose solution, regular as t → 0 and t → 1, determines the tensor z-integral. We solve

them for our specific case: d = 4, ∆1 = 3, ∆3 = 2 and f = 5; which implies ∆13 = 1,

m2
1 = −3 and m2

3 = −4:

∇µ∇ν(−3h− φ + 6X + 2Y ) = 0, (D.30)

6h + 4t(t− 1)φ′ + 4φ + 8t(t− 1)X ′ + 2X − 8t(t− 1)Y ′ − 18Y = −12t2 + c1, (D.31)

6th′ + 6h − 2φ− 6tX ′ − 10tY ′ − 16Y = 0, (D.32)

12t2(t− 1)h′′ + 24t2h′ + 82h + 12t(t− 1)φ′ + 26φ

+32t2(1− t)X ′′ + [−20t2 − 44t]X ′ + 44t(t− 1)X − 112Y = −24t2.
(D.33)

From eq. (D.30) we pick up the trivial solution

h = −1

3
φ + 2X +

2

3
Y (D.34)

and substitute it in eq. (D.32) to obtain

2t(φ′ − 3X ′ + 3Y ′) + 4(φ− 3X + 3Y ) = 0.

This equation can be trivially integrated to give

φ− 3X + 3Y = c2t
−2. (D.35)
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This is regular as t→ 0 for c2 = 0. Substituting h and φ in terms of X and Y in eq. (D.31),

we get

20t(t− 1)(X ′ − Y ′) + 20(X − Y ) = −12t2 + c1.

The solution consistent with the asymptotic behavior is given by

X = Y − 6

10
t +

c1

20
. (D.36)

Finally, we substitute eqs. (D.34), (D.35) and (D.36) in eq. (D.33) and find

Y (t) =
18t− 3c1

40
.

Substituting back, we find the remaining three functions

X(t) =
−6t− c1

40
, φ(t) =

−36t + 3c1

20
, h(t) =

12t− 3c1

20
.

Upon substitution of the four functions in eq. (D.21), all the terms proportional to the

integration constant c1 cancel and the tensor integral becomes

Iµν(ω) = ω0

(

3

5
tgµν −

9

5
tPµPν −

3

20
∇µ∇νt +

9

20
∇(µ

(

Pν)t
)

)

.

Working out the derivatives, we find

Iµν(ω) = −6

5
ω0t

ωµων

(ω2)2
.

In terms of the original coordinates, the z-integral describing the exchange by a sym-

metric tensor field of mass squared f = 5 is

Aµν(ω, ~x1, ~x3) = − 1

~x2
31

6

5
QµQνK2(ω, ~x1)K1(ω, ~x3),

where Qµ is defined in eq. (D.13).
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